If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45y^2+150y+125=0
a = 45; b = 150; c = +125;
Δ = b2-4ac
Δ = 1502-4·45·125
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$y=\frac{-b}{2a}=\frac{-150}{90}=-1+2/3$
| 37=10p-3 | | (x-3/3)-1=(x-10/5) | | 5(2-u)-u=2(u+1 | | -4(-6v+9)-6v=3(v-3)-9 | | (X)=2×5x | | 18(v+2)-2v=4(4v+1)-11 | | 2x+15+7=x+16 | | (x-4/4)-1=(x-12/5) | | -8(u+1)=-6u-6 | | 7x^2+3x-11=0 | | 3z+4z-4=0 | | 14+12×=-16+9x | | s*7-43=146 | | 12m–5m+3m+2=12 | | |6x|=54 | | F(x)=2×5x | | -3x+14=x+2 | | x²+2x=x² | | 14.2d-25.2=3.8d+26.8 | | 69=−9d+6 | | a²+2a=a² | | 3(5x-8)-26=14(x+2) | | 2+13=-5(8x-3) | | 12x-x-1=0 | | 6y-26=-5(y+3) | | .83333333333f=10 | | x–1+5x=23 | | 2−2s=3/4+13 | | 7x+5=117 | | 9=3r−6 | | 3(2x+5)=-36+15 | | x/3+1/3=1 |